放電焼結法で作製した AI-Si 複相合金の乾式摺動特性に及ぼす Si 粒子の 空間分布の影響

倉本英哲 隠岐貴史 柳沢 平*

Influence of Spatial Distribution of Si-particle on dry wear properties of spark

sintered Al-Si composite

Hideaki KURAMOTO, Takashi OKI and Osamu YANAGISAWA

In order to investigate the influence of Si-particle spatial distribution of Al-Si composite on dry wear properties, the Al-20vol%Si composites with various Si-particle size and spatial distribution were made by spark sintering, and dry wear tests of the composites were performed. The results obtained were summarized as follow :

It was confirmed that the specimen hardness increased with increasing of Si-particle clustering tendency of spatial distribution, and specimens not containing large size Si-particle were harder than the another one. In this report the Ring-on-Disk type wear test was performed under the condition that press-down force, F, of the ring against the disk is constant. Two kind of F values, 9.8N or 49N, were chosen for wear test. In case F=49N, the wear mode was adhesive wear, and regardless of kind of specimens the same friction coefficient, μ , was obtained. In this case, it was confirmed that the wear quantities, W, depended on the specimen hardness. In case F=9.8N, the tiredness caused by vibration joined wear mode. The behavior of wear dust containing Si-particle made during wear test, especially Si-particle separated from material, and strength of composite would influence μ and W complexly.

Keywords : Al-Si composite, dry wear properties, local area fraction, local particle number density

Al-Si 複相合金において、第2相粒子である Si 粒子の空間分布が乾式摺動特性に与える影響を明らかにす るために、粒子の粒径分布と空間分布傾向が異なる Al-Si 複相合金を放電焼結法によって作製し、乾式での 摩耗試験を行った。この時、Al-Si 複相合金の Si 粒子の体積率は 20%で一定とし、また、粒子の平均粒径に ついても、ほぼ一定とした。得られた結果は以下のように要約される。

摩耗試験はリングオンディスクタイプで行い、リングの押さえつけ荷重を一定として試験を行った。この時、試験荷重(F)は 9.8N および 49N の 2 種類を選択した。F=49N 場合、摩耗は主に凝着摩耗の形態で起こり、摩擦係数(μ)は試料によっては変わらなかった。このとき、摩耗量(W)は試料の硬さ(= 強度)に依存することが分かった。F=9.8N の場合、振動の影響を受け、その摩耗形態には転がり疲れの影響が加わる。摩耗に関しては、Si 粒子を含む摩耗粉、特に Si 粒子の剥離挙動と材料の強度が複合的にμと W に影響するものと考えられた。

キーワード:Al-Si 複相合金、乾式摺動特性、局所面積率、局所粒密度

1 緒言

近年、自動車をはじめとする機械や装置では、省 エネルギーおよび高効率化を目指して、大幅な軽量 化が望まれている。このような情勢の中、非鉄金属、 特に代表的な軽金属として挙げられるアルミニウム 合金の需要が高まってきている。このように、アル ミニウム合金製の機械装置構成部品の多様化が求め られる中で、耐摩耗性能が求められる部分も多い。 しかし、一般的にアルミニウム合金の摩耗形態は凝 着摩耗であり、その耐摩耗特性は十分なものとはい えない。ここで、耐摩耗用のアルミニウム合金の代 表として AI-Si 複相合金が挙げられる。AI-Si 合金は

*広島大学大学院工学研究科

鋳造性がよく、自動車エンジンなどの内燃機関のピ ストン、シリンダボア、軸受け用メタルなどに利用 されている材料であり⁽¹⁾⁻⁽⁴⁾、その組織形態はAlマト リックスと共晶および初晶Si粒子よりなる2相材料 である(過共晶)。2相材料では、その第2相粒子の体 積率(面積率)、粒径分布が機械的性質や熱的性質に 大きく影響を及ぼすことが知られており、また、そ の強化機構についても多くの報告がある⁽⁵⁾⁻⁽¹⁰⁾。しか し、第2相粒子の空間分布(分散状態)の影響に関す る研究は少なく^{(11),(12)}、特に空間分布を定量化し、摩 耗との関係について調べた報告はほとんどない。空 間分布については、大まかにOrdering分布、

Randam 分布および Clustering 分布の 3 種類に分 類される。柳沢ら⁽¹³⁾⁻⁽¹⁵⁾は、局所面積率(Local Area Fraction:LAF)、局所体積率(Local Volume Fraction:LVF)、2 次元の局所粒密度(2-Dimensional Local particle Number Density:LND2D)および 3 次元の 局所粒密度(3-Dimensional Local particle Number Density:LND3D)等の空間分布パラメータの頻度分 布より粒子の空間分布を評価する手法を確立してお り、この手法によって空間分布は定量化することが できる。

本研究では、粒径分布と空間分布に着目し、これ らの分布傾向が摩耗特性に及ぼす影響について明ら かにすることを目的とした。評価は、一定荷重条件 でのリングオンディスクタイプの乾式での摩耗試験 によって行うこととした。試験片の作製は、鋳造法 では第2相粒子の空間分布や粒径分布についての制 御が困難であることから、粉末冶金法を用いること とし、その中でも低温、短時間での緻密化が可能で ある放電焼結法⁽¹⁶⁾を用いることとした。

2 **実験方法**

2.1 試料作製

供試粉末は、㈱高純度化学研究所製の純アルミニ ウムおよび純シリコン粉末である。本研究では、粒 径 300µm、150µm 以下、平均粒径が 30µm および 3µm の4種類の純アルミニウム粉末と遊星型ボール ミルで粉砕し、目開きが 25µm と 75µm の金属ふる いで分級した 2種類のシリコン粉末を用いた。Fig. 1

Fig. 1 SEM images of as-received powder. Aluminum powder particle size are (a)3μm average, (b)300μm under and silicon powder particle size are (c)25μm under, (d)75μm under.

にそれぞれの粉末の SEM 像を示す。

ここで、シリコン粉末の取り扱いに関しては、基本的に粒径 25µm 以下、75µm 以下としたが、本研究では後述で示すように平均粒径を揃えるようにし、特に 75µm 以下の場合に、微粉を混ぜて粒径について調整した。また、粒径 75µm 以下のシリコン粉末を用いた場合を Type A と 25µm 以下のシリコン粉 末を用いた場合を Type B と呼ぶこととした。

Si 粒子体積率(V_p)が 0.2 となるように秤量したア ルミニウム粉末とシリコン粉末を V 型混合機によっ て混合し、その後放電焼結法によって試験片(縦×横 ×厚さ:32mm×32mm×6mm)を作製した。用いた 放電焼結機は計装化されたものであり、電源は矩形 波パルス通電を行うモード1 および連続パルス通電 を行うモード2の2系統を有する。型およびパンチ はグラファイト(ISO63)製である。焼結は、粉末粒子 間の酸化膜の絶縁破壊など^{(17),(18)}による圧粉体比抵 抗の減少を目的としたモード1の電源での on/off 比 が1:1、パルス幅が 100ms、電流値が 200A の矩形 波パルス通電を 600s 行い、その後、圧密化を目的 として、モード2 による連続パルス通電を行った。 このとき、温度によって制御を行い、その温度は Al-Si 合金の溶融温度(約 850K)以下の 820K となる

Fig. 2 Optical micrographs of Al-Si composite. (a), (b),
(c), (d), (e), (f) are specimens called No. , , , , , , respectively in Table 1.

ように設定し、等温保持を 3600s 行い、相対密度(D) が 0.99 以上となるようにした。加圧力は 28.6MPa で一定とした。

Fig.2 に試験片断面の顕微鏡観察結果を示す。こ こで、Type A、Type B のそれぞれについて、4 種類 の粒径のアルミニウム粉末の混合比を変えることで 図に示すような Si 粒子の空間分布傾向の異なる 3 種類の試料を作製した。

Table1 にそれぞれの試料についてのアルキメデ

 Table1 Relative density obtained from Archimedes

 method and average Si particle diameter obtained from

 image analyzing.

Туре	No.	Relative density	Average Si particle	
			diameter (µm)	
Α		0.999	3.088	
		0.993	3.576	
		0.997	3.603	
В		0.998	3.200	
		0.999	3.897	
		0.994	3.855	

ス法によって求めた相対密度と画像解析によって求 めた Si 粒子の平均粒径を示す。結果として、Si 粒 子の粒径分布と空間分布が異なり、平均粒径がほぼ 等しい Al-Si 合金を作製することができた。

2.2 試験方法

2.2.1 Si 粒子の空間分布評価

空間分布パラメータの測定⁽¹²⁾⁻⁽¹⁴⁾は、試験片断面の 光学顕微鏡観察結果より画像解析を用いて行った。 その手法としては、以下のとおりである。

(1)全体の Si 粒子の平均粒径とこのときの粒数を 求め、これらより局所面積率(LAF)および局所粒密 度(LND2D)を測定するための測定円(隣接粒子の情 報を最も強く反映できる大きさ)の半径を決定する。 (2)ある任意の Si 粒子の重心を中心として、(1)で 決定された測定円内の Si 粒子の面積率および粒子 数を測定する。これをすべての粒子について測定し、 LAF に対しては Si 粒子の面積率(体積率にほぼ等し い)で、LND2D に対しては最稠密配列の値である 7 で除する事で規格化して LAF、LND2D 値とする。 このようにして求めた個々の粒子に対する LAF、 LND2D の頻度分布と平均値(LAF)av および (LND2D)avを求める。また、大粒径と小粒径が分離 して集まる傾向(粒径分離傾向)を表すパラメータ (δ2D:(LAF)av/(LND2D)av)も同時に求める。

Table2	Example	of	(LAF) _{av} ,	(LND2D) _{av} and	δ_{2D}
--------	---------	----	-----------------------	--------	---------------------	---------------

		Distribution	(LAF) _{av}	(LND2D) _{av}	2D
	Random		1.092	1.089	1.003
		\$ \$ \$ }	1.308	1.302	1.005
	Clustering	1 4 2 4 2 4	1.989	1.976	1.007
Par se	ticle size parating tendency		1.456	2.459	0.592

以上のようにして二次元での空間分布パラメータ を求めることができる。Table2に粒子の分布傾向と 得られる(LAF)_{av}、(LND2D)_{av}およびδ_{2D}の値の関係 の例について示す。また、Table3にコンピュータ ー・シミュレーションによるランダム分布の空間パ ラメータの平均値を示す。このランダムパラメータ の値が、試料の測定値を比較する際に基準となる。

Table3 Parameters of the random spatial distributions forvarious log-normally distributed particle diameter.

$\ln \sigma_3^*$	0	0.3	0.5	0.7
(LND2D) _{av}	0.96	0.96	0.96	0.96
(LAF) _{av}	0.95	0.95	0.94	0.93

 $^{*}\ln\sigma_{3}$: Standard deviation of lognormal particle size distribution

2.2.2 硬さおよび摩耗試験

試験は硬さ試験および摩耗試験を行った。

硬さ試験は JIS に規定するロックウェル硬さ試験 によって行った。試験は F スケールで行った。

本研究での摩耗試験方法としては、代表的なリン グオンディスクタイプの摩耗試験機である大越式摩 耗試験機を用いて行った。大越式摩耗試験は回転円 盤(SUJ2 製)を平板試験片に押し付けて摩耗させる 摩耗試験である。本研究では、リングを平板試験片 に押し付ける荷重を一定とした一定荷重条件での試 験とし、このときの押し付け荷重(F)は 9.8N および 49N を選択した。この摩耗試験においては、試験終 了後の摩耗痕幅(b)の測定を行うことで、摩耗量(W) を以下の幾何学的近似式によって算出することがで きる。この時の近似が良く一致する範囲は、b=1~ 3mm 程度とされており、予備実験よりこの程度の摩 耗痕を作る条件として摩耗距離は 33.3m、摩耗速度 は 0.174m/s を選択した。以上の条件は試験片に関 わらず一定とした。

$$W = \frac{Bb^3}{12r} \tag{1}$$

ここで、 r および B は、それぞれ回転円盤の半径 (mm)および回転円盤の厚さ(mm)である。本研究に おいて、r=30、B=3.0 である。 次に、摩擦係数(µ)に関しては、回転円盤の軸トル ク(T)が分かれば、一般的な摩擦係数を求める以下の 式によって表すことができる。

$$\mu = \frac{T}{Fr} \tag{2}$$

なお、試験はすべて乾式で行うこととした。

3 実験結果および考察

3.1 Si 粒子の空間分布

Fig.3 に画像解析より得られた試料の LAF および LND2D の累積頻度分布を示す。図中に Simulation と示したのは、コンピューター・シミュレーション によるランダム分布の計算結果であり、これを評価 の基準とした。図上において、クラスタリングの傾 向が強くなると、Simulation のラインより右側にシ フトした形で測定結果が表れる。結果として、No.

および の材料の LAF は、Simulation のライン に近い値を示していることが分かる。ただし、 LND2D については、若干グラフが右側にシフトし た状態で表れた。つまり、面積率の観点からは、ラ ンダムであるが、粒子のばらつき方はクラスタリン グ傾向があるということを示している。これは、粒

Fig.3 Cumulative frequency distribution of (a), (c)local area fraction,LAF, and (b), (d)2-dimentional local particle number density,LND2D, for the different spatial distribution. ; (a), (b) TypeA and (c),(d)TypeB.

径のばらつきによって、見かけの分布が実際の粒子 の重心点の分布とずれを生じたためではないかと考 えられる。なお、クラスタリング分布の傾向につい ては、その傾向が強くなるにしたがって(No.

、No.)、空間分布パラメータの累積 頻度分布は大きな値へと移っており、Fig.2 で示し た組織の様子をよく表している。

Table4に各試料の2次元における空間パラメータ である LAF の平均値(LAF)av、LND2D の平均値 (LND2D)av、粒径分離傾向 2D を示す。実験の結果、 (LND2D)av について、AとBタイプの材料で、ほぼ 同じ値を示す材料を作製することができた。δ_{2D}は、 (LAF)avと(LND2D)avの関係を示しているが、1に近 いほど粒子の局所面積率と局所粒密度の傾向が同じ であることを表す。本研究で得られたδ2pは1よりも 小さい。また、AとBタイプの材料を比較した場合、 A タイプの δ_{2D} の値が小さくなっている。すなわち、 A タイプの材料の方が、局所面積率と局所粒密度の 関係が異なる傾向を持つことを示している。(LAF)av と(LND2D)avの値は、Table3の値と比較することで、 それぞれの材料についてのクラスタリング分布傾向 を知ることができる。ここで、本研究の(LAF)avと (LND2D)avの値の関係は、全体的に(LND2D)avに比 べて、(LAF)av が小さいことがわかる。これは、大 きい粒子は粒数が少ないためにあまり凝集せず、多 数ある小さい粒子が凝集するために、局所の粒数は 増えるものの、面積は大きくならないためであろう。 これは、シリコンの粒径分布が大きくなるほど、起 こりやすくなると考えられ、結果として、先に示し

Table4 Measurement result of $(LAF)_{av}$, $(LND2D)_{av}$, and δ_{2D} .

Туре	No.	(LAF) _{av}	(LND2D) _{av}	δ2D
		0.83	1.25	0.67
Α		1.24	1.55	0.80
		1.58	2.04	0.77
В		1.07	1.29	0.83
		1.48	1.63	0.91
		1.84	2.12	0.87

たδ2Dの値に影響を及ぼしたものと考える。上述の測 定結果について、(LND2D)av と(LAF)avの関係を Fig.4 に示す。結果として、AとBタイプのどちら の材料においても、(LAF)av に対する(LND2D)avの 増加割合はほぼ等しいことが分かる。

Fig.4 Relation between (LAF)_{av} and (LND2D)_{av}.

3.2 **ロックウェル硬**さ

Fig.5 に(LND2D)av とロックウェル硬さ(HRF)の 関係を示す。図からわかるように、B タイプの材料 の方が硬さの値が全体的に大きくなることが分かる。 この原因として、A タイプの材料は大きな粒径のシ リコン粒子を含んでいるが、この粒子が試験時に優 先的に破壊されてしまい、破壊された粒子が荷重負 担しなくなることで、硬さは小さくなったものと考 える。次に、A および B タイプのどちらについても、 (LND2D)avが大きくなり、クラスタリング傾向が強 くなるほど、その硬さは増大した。これは、凝集す るシリコン粒子が、微小粒子であるためと考えられ る。粒子分散合金において、第2相粒子間の距離は 小さいほどその拘束力は強くなるため、変形能は小 さくなり、強度は大きくなる。例えば、材料全体で 見れば強いクラスタリング傾向を示す材料であって も、微小シリコン粒子の凝集した部分のみに着目し た場合、その分布はほぼランダムであり、非常にシ リコン体積率が大きく、強度が大きい部分として考

Fig. 5 Effect of Si- spatial and particle size distribution on Rockwell hardness.

えることができる。これを一つの添加粒子であると 考えた場合、同じくらいの大きさの単ーシリコン粒 子に比較して、割れることもない非常に強い粒子が 材料中に均一に分散していると考えることができる。 つまり、実験結果は、同じシリコン体積率であれば、 クラスタリング傾向が強くなるほど、微小シリコン 粒子の凝集は起こりやすく、強度の強い部分が作ら れやすいことを示しているものと考えられる。

3.3 摩耗特性

3.2.1 摩耗量と摩擦係数

Fig.6 にそれぞれの負荷荷重(F)下での摩耗量(W) と LND2D の関係を示す。摩耗量は体積で示し、(1) の近似式により摩耗痕幅から求めたものである。ま た、Fig.7 に各荷重下での摩擦係数(µ)と LND2D の 関係を示す。ここでµは式(2)によって求めた値であ る。軸トルク(T)は試験開始時に大きな値を示し(初 期摩耗)、その後すぐに一定の値を示す。そこで、本 研究でのµは、初期摩耗が終わり十分に定常摩耗に入 ったと思われる、実験開始から 100s 後の T の値を 用いて算出した。

F=9.8N の場合、W は TypeA と B でほぼ同じ値 を示す。このとき、(LND2D)av の増加に対しては、 1.6 程度までの増加ではほとんど変化しないが、2 ま で増加すると、W は小さくなる傾向を示した。μに 関しては、TypeB の方が小さくなる傾向を示し、 (LND2D)avの増加に対して、わずかではあるものの、 小さくなる傾向を示した。

F=49N の場合、明らかに TypeB においてその摩 耗量は小さくなった。粒子分散傾向の影響について は、(LND2D)avの増加に伴い、W は減少する傾向が 見られた。特に、F=9.8N のときとは異なり、 (LND2D)avが 1.6 までの間で顕著であり、それ以上 では鈍感になる。 μ に関しては、TypeA と B ともに ほぼ同じ値を示し、(LND2D)avの影響はほとんど見 られなかった。

Fig.8 に試験終了後の摩耗痕の観察結果を示す。 まず、Fの違いによる摩耗痕の形状の違いが確認さ

Fig.6 Influence of $(LND2D)_{av}$ and particle size distribution on wear quantities,W, in case that press-down force of the ring against the disk are (a)9.8N and (b)49N.

Fig.7 Influence of $(LND2D)_{av}$ and particle size distribution on friction coefficient, μ , in case that press-down force of the ring against the disk are (a)9.8N and (b)49N.

れた。F=49Nの場合には、凝着摩耗の痕跡であろう と思われ、比較的綺麗な摩耗痕を示しており、安定 した摩耗状態で摩耗が進行したことが分かる。しか し、F=9.8Nの場合には、通常の摩耗痕の中に表面 層の剥離痕を観察することができた。これは、転が り疲れ、つまり、ピッチングやスポーリングのよう に見られるが、リングと試験片の間での繰り返し荷 重の負荷があったのではないかと考えられる。これ は、F が小さいために、試験中の振動等によって、 リングが試験片に回転しながらたたきつけられるよ うな動きがあったものと思われる。また、摩耗痕に 摩耗粉と思われる微粉の存在も多く確認され、上述 の現象を示しているのではないかと考えられる。

次に、シリコン粒子の大きさの影響については、

Fig.8 SEM images of worn surface of Type (a),(c) , (b),(d) , (e),(g) and (f),(h) after the wear test, under the condition of F=(a), (b), (e), (f)9.8N and (c), (d), (g), (h)49N.

粒径分布は小さい方が、摩耗痕において凝着の度合 いが小さくなる傾向を示した。また、クラスタリン グの傾向についても強くなるほど、同様の傾向を示 した。

以上のことから、F=49Nの場合には、硬さ試験の 結果と合わせて考えて、硬さの大小にWが依存して いることが分かる。つまり、この場合では摩耗の形 態は安定した状態であり、材料の強度に依存した摩 耗特性を示したものと考えられる。次に、F=9.8N の場合には、代表的には転がり疲れの痕と見られる ものが観察された。これは、押さえつけ荷重が小さ いために、振動によってリングが試験片に繰り返し たたきつけるような動きが生じて起こったものと推 測することができるが、結果として凝着摩耗と疲労 の組み合わせによって摩耗が進行していたものと考 えられる。ここで、TypeBの試料で、また、クラス タリングの傾向が大きくなるほどμが小さくなる傾 向を示したが、これはSi粒子と粒子を含む摩耗粉に 影響されるのではないかと考えられる。特にSi粒子 に着目すると、クラスタリング傾向が強くなること で、Si粒子の隣接する確立は大きくなる。この場合、 Si粒子の保持力は小さくなり、剥離しやすくなる。 剥離したSi粒子および粒子を含む摩耗粉がリング と試料の間に入り込むことで、コロのような役割を 担うと考えれば、μは小さくなる。ただし、剥離しや すいとすれば、アプレッシブ摩耗の起こりやすくな るため、また、単純にWは増加する傾向になる。ク ラスタリングの傾向については、強くなると試料の 強度は大きくなる。以上のことから、μの値に対して、 Wが連動せず、Wは複合的に強度とμのバランスに よって決定されるのではないかと考えられる。

4 結言

Si 粒子の平均粒径(d_s=3~4µm)がほぼ同じで、粒 径分布(TypeA:~70µm、TypeB:~28µm)および 空間分布傾向の異なる Al-20vol%Si 合金を、放電焼 結法によって作製し、摩耗試験および硬度試験に供 した。得られた結果は以下のように要約される。

 粒径分布では TypeB の試料が、また、空間分 布については、クラスタリングの傾向が大きくなる ほどロックウェル硬さ(HRF)は大きくなる傾向を示 した。

(2) リングの試料への押さえつけ荷重(F)が十分に 大きい場合(F=49N)、摩耗は主に凝着摩耗の形態で 起こり、摩擦係数(µ)は試料によっては変わらず、ま た、摩耗量(W)は試料の硬さ(=強度)に依存すること が分かった。しかし、Fが小さい場合(F=9.8N)には、

振動の影響を受け、その摩耗形態には転がり疲れの 影響が加わる。摩耗に関しては、Si 粒子およびこれ を含む摩耗粉の発生、特に Si 粒子に着目して、この 母材からの剥離のしやすさが摩耗に影響するものと 考えられた。

おわりに本研究を実施するに際して、摩耗リングの加工等に使用した NC 旋盤および試料調整に用いた遊星型ボールミルは、日本自転車振興会競輪機械

工業資金補助により整備したものであり、また、試 料作製に用いた放電焼結機は、経済産業省地域産業 集積活性化対策補助により整備したものであること を記し、関係各位に深く感謝いたします。

参考文献

p.18-20.

(2)神谷荘司:トライボロジスト 46(2001) p.129

(3)A Ge'rard : Rev. Alum. (1976) p.325-330.

(4) . . , . .

Avtomob Prom-st' 41(1975) p.34-36.

(5)S.Ranganath, T.Roy and R.S.Mishra : Mater. Sci. Technol. **12**(1996) p.219.

:

(6)荒木弘安、石川 朗、石井 仁、東郷敬一郎:紛体お よび粉末冶金 43(1996)p.1247.

(7)A.Kelly and R.B.Nicholson : Prog. Mat. Sci. **10**(1963) p.15.

(8)A.F.Whitehouse and T.W.Clyne : Acta Metall. Mater. 41 (1993) p.1701.

(9)P.M.Mummery, B.erby, J.Cook and J.H.Tweed : Euromat 91 **2**(1992) p.92.

(10)Y.Brechet, J.D.Embury, S.Tao and L.Luo : Acta Metall. Mater. **39**(1991) p.1781.

(11)S.Tao and J.D.Boyd : Mech. Mech. Compos. Fract. (1993) p.29.

(12)H.Toda and T.Kobayashi : Metall. Mater. Trans. A **28A**(1997) p.2149.

(13)柳沢 平、マンスール・アハマド、加茂修治、松木一 弘:鋳造工学 **70**(1998) p.7.

(14) 柳沢 平、諸隈真嗣、畑山東明、松木一弘:鋳造工学 73(2001) p.733-740.

(15) 隠岐貴史、松木一弘、清水功史、柳沢 平: 軽金属 52(2002) p.243-249.

(16)T.Sakamoto and H.Miura:材料技術 15(1994) p.19.
(17)松木一弘、畑山東明、柳沢 平:日本金属学会誌
59(1995) p.740-745.

(18)倉本英哲、松木一弘、畑山東明、柳沢 平:日本金属 学会誌 **65**(2001) p.868-873.