放電焼結法で作製した AI-Si 複相合金の乾式摺動特性に及ぼす

Si 粒径と体積率の影響

倉本英哲 隠岐貴史 松木一弘* 柳沢 平*

Influence of Si-particle diameter and volume fraction on dry wear properties of spark sintered Al-Si composite

Hideaki KURAMOTO, Takashi OKI, Kazuhiro MATSUGI and Osamu YANAGISAWA

In order to investigate the influence of Si-particle diameter and volume fraction of Al-Si composite on dry wear properties, specific wear rate and friction coefficient, the composites with various Si-particle diameters and volume fractions were made by spark sintering, and dry wear tests of the composites were performed. The results obtained were summarized as follow :

It was confirmed that specific wear rate and friction coefficient decreased with increasing Si- volume fraction and average particle diameter, and influence of Si- volume fraction tends to become stronger, as Si-particle average diameter was smaller. However, in case Si-particle diameter is too large, specific wear rate increases with increasing Si-volume fraction under the influence of Si-particle's crack.

Keywords : Al-Si composite, spark sintering, specific wear rate, friction coefficient,

Al-Si 複相合金において、乾式摺動特性(比摩耗量、摩擦係数)に与える Si 粒径および体積率 の影響を明らかにするために、放電焼結法によって Si 粒径および体積率の異なる Al-Si 複相合 金を作製し、乾式での摩耗試験を行った。得られた結果は以下のように要約される。

Si 粒径および体積率は大きくなるほど、摩擦係数および比摩耗量ともに小さくなり、また、 Si 粒径が小さいほど Si 体積率の増加の影響が強くなることが分かった。ただし、Si 粒径が大 きすぎる場合、粒子の割れ等の影響により比摩耗量は Si 体積率の増加に伴い増加する。

キーワード:Al-Si 複相合金、放電焼結、比摩耗量、摩擦係数

1 緒言

近年、自動車をはじめとする機械や装置では、省エ ネルギーおよび高効率化を目指して、大幅な軽量化が 望まれている。このような情勢の中、非鉄金属、特に 代表的な軽金属として挙げられるアルミニウム合金の 需要が高まってきている。このように、アルミニウム 合金製の機械装置構成部品の多様化が求められる中で、 耐摩耗性能が求められる部分も多い。しかし、摩耗に 関して、アルミニウム合金は凝着を起こしやすく、そ の耐摩耗特性は十分なものとはいえない。ここで、耐

*広島大学大学院工学研究科

摩耗用のアルミニウム合金の代表として Al-Si 複相合 金が挙げられる。Al-Si 合金は鋳造性がよく、一般的 には鋳造によって作製される材料で、自動車エンジン などの内燃機関のピストン、シリンダボア、軸受け用 メタルなどに利用されている材料である⁽¹⁾⁻⁽⁴⁾。

鋳造によって作製された Al-Si 合金の金属組織は、 Al マトリックスと共晶および初晶 Si 粒子よりなる 2 相材料である(過共晶)。2 相材料では、その第2 相粒 子の体積率(面積率)、粒径分布が機械的性質や熱的性 質に大きく影響を及ぼすことが知られている(5-(9)。 鋳 造法によって作製した2相材料の第2相粒子の空間分 布と粒径について、添加元素や冷却速度の制御によっ てある程度は制御することができる。しかし、任意に とは言えず、ある程度の自然現象の制約を受けること となる。特にAl-Si合金の凝固では、まず初晶のSiが 析出し、その後、成長と微細な共晶 Si の析出が起こる。 このため、Si 粒子の粒径は大粒子と微細粒子から構成 され、その粒径や体積率を自由に設計することは難し い。本研究では、Si 粒子の粒径と体積率の影響につい ての調査を行うことから、これらを自由に設計するこ とが望まれる。そこで、本研究での試料作製には、用 いる粉末の粒径や形状を制御することで比較的自由に 第2相粒子の粒径や体積率を制御することが可能であ る粉末冶金法を用いることとし、Si 粒子の粒径および 体積率を制御して、種々の粒径および体積率をもつ Al-Si 複相合金を作製した。用いる粉末冶金法として は、低温、短時間での緻密化が可能である放電焼結法 (10)を用いることとした。

前述のように、第2相粒子の体積率などが機械的性 質に与える影響についての報告は種々あるものの、摩 耗特性に与える影響、特に Al-Si 合金の場合について の詳細な研究は少ない。そこで、本研究では、種々の Si 粒径および体積率をもつ Al-Si 合金を摩耗試験に供 し、摩耗特性に及ぼす Si 粒径および体積率の影響を明 らかにすることを目的とした。

2 実験方法

2.1 試料作製

供試粉末は、(株福田金属箔粉工業製の純アルミニウ ムおよび純シリコン粉末である。それぞれの粉末の

Fig. 1 SEM images of as-received (a)aluminum powder and (b)silicon powder.

SEM 像を Fig. 1 に示す。用いた純アルミニウム粉末 は、その平均粒径が約23µmのアトマイズ粉末であり、 また、シリコン粉末は、遊星型ボールミルで粉砕した 粉砕粉で角ばった形状をしており、これを目開きが 25µm、53µm、90µm および 180µm の金属ふるいに よって、25µm 以下、25~53µm、53~90µm および 90~180µm の 4 種類の粒径に篩分けを行った。平均 粒径は、それぞれ 2.3µm、11µm、55µm および 110µm であった。この平均粒径は後述の組織観察結果より画 像解析によって二次元における粒子面積から求めた平 均粒径を測定した結果である。ここで、篩の目と粒径 が一致していないのは、本研究で用いた Si 粒子が、 Fig.1 に示すような縦横の比率が大きく異なる粒子を 含んでいるためであろう。以後、試験片の分別はこの 平均粒径(d_a)を以って行うこととした。

Si 粒子体積率(V_p)が 0.1、0.2 および 0.3 となるよう に秤量したアルミニウム粉末とシリコン粉末をV型混 合機によって混合し、その後放電焼結法によって試験 片(縦×横×厚さ:32mm×32mm×6mm)を作製した。 用いた放電焼結機は計装化されたものであり、電源は 矩形波パルス通電を行うモード1および連続パルス通 電を行うモード2の2系統を有する。型およびパンチ はグラファイト(ISO63)製である。焼結は、粉末粒子 間の酸化膜の絶縁破壊など^{(11),(12)}による圧粉体比抵抗 の減少を目的としたモード1の電源でのon/off比が 1:1、パルス幅が100ms、電流値が200Aの矩形波パ ルス通電を600s行い、その後、圧密化を目的として、 モード2による連続パルス通電を行った。このとき、 温度によって制御を行い、その温度はAl-Si合金の溶 融温度(約850K)以下の773~820K となるように設定 し、等温保持を3000~3600s行い、相対密度(D)が0.98 以上となるようにした。加圧力は28.6MPaで一定と した。

Fig.2 に V_p =0.2 で d_a =2.3 μ m、11 μ m、55 μ m、110 μ m および V_p =0.1 および 0.3 で d_a =11 μ m の試験片断面の 顕微鏡観察結果を示す。図から、 d_a =11 μ m、55 μ m、 110 μ m の場合、Si 粒子はほぼ均一に分散しているこ とが確認される。しかし、母相の Al 粉末に比較して、 極端に d_a が小さい試料、つまり、 d_a =2.3 μ m の場合は Si 粒子の分散はクラスタリング(凝集)の分布傾向を示 すこととなった。また、 V_p =0.3 のとき、特に Si 粒子

Fig. 2 Optical micrographs of Al-Si composite which Si-average particle diameter, d_a , and volume fraction, V_p , are (a) $d_a=2.3\mu$ m, $V_p=0.2$, (b) $d_a=11\mu$ m, $V_p=0.2$, (c) $d_a=55\mu$ m, $V_p=0.2$, (d) $d_a=110\mu$ m, $V_p=0.2$, (e) $d_a=11\mu$ m, $V_p=0.1$, (f) $d_a=11\mu$ m, $V_p=0.3$.

が凝集する部分において、空隙が確認された。これは、 Vpが大きくなることで、筆者らが以前報告⁽¹³⁾したよう に、Si粒子同士の接触部が増加し、埋められることの ない空隙の割合が増えたためであろうと考えられた。

2.2 試験方法

試験は硬さ試験および摩耗試験を行った。

硬さ試験は JIS に規定するブリネル硬さ試験によっ て行った。試験条件としては圧子直径 10mm、試験荷 重 4.903kN を選択した。

本研究での摩耗試験方法としては、大越式摩耗試験 選択した。大越式摩耗試験は回転円盤(SUJ3 製)を平板 試験片に押し付けて摩耗させるリング-オン-ディスク タイプの摩耗試験であり、最大の特徴としては圧力を 一定としての定圧摩耗試験を行うことができる点が挙 げられる。この摩耗試験においては、試験終了後の摩 耗痕幅(b)の測定を行うことで、摩耗量(W)を幾何学的 近似によって算出することができ、さらに、比摩耗量 (W_s)を以下の近似式によって算出することが可能であ る。このとき、摩耗速度(V)は一定である必要がある。

$$W_s = \frac{Bb^3}{8rF_ol} = \frac{1.5W}{F_ol} \tag{1}$$

ここで、F₀、1、r および B は、それぞれ最終試験荷 重(N)、摩耗距離(mm)、回転円盤の半径(mm)および回 転円盤の厚さ(mm)である。本研究において、r=30、 B=3.0 である。

次に、摩擦係数(µ)に関しては、回転円盤の軸トルク (T)が分かれば、一般的な摩擦係数を求める以下の式に よって表すことができる。

$$\mu = \frac{T}{Fr} \tag{2}$$

ここで、F は定圧式摩耗試験においては刻々と変化する試験荷重である。

大越式摩耗試験では、W。の算出のための理論展開に おいて、多くの近似を行っており、これらの近似を最 も満たす条件として、試験後のbは1~3mm程度が 適当であるとされている。そこで、本研究では上述の 条件を満たすような試験条件として、l=66.6m、 F0=22N、V=0.063m/sを設定した。なお、試験はすべ て乾式で行うこととした。

3.1 **ブリネル硬**さ

Fig.3 に Vp とブリネル硬さ(HBW)の関係を示す。 図 から、V_pは大きくなるほど、また、d_aは小さくなるほ ど、HBW は大きくなることが分かる。また、Vpの増 加に伴い直線的にHBW が増加していることが確認さ れる。daが大きくなるほどHBW が小さくなる原因と しては、Si 粒子が大きくなるほど、圧子を押し付けた 場合の試料変形時のSi粒子の破壊(割れ)が起こりやす くなり、割れを起点として材料強度の低下を引き起こ したためであろうと考えられえる。ただし、da が 55 と110umの場合には、試験結果はほとんど変わらず、 上述の割れの影響は da 55µm が上限と考えられる。 da=約 55µm 以下の Si 粒径においては、da が小さくな るほど V_p増加の HBW 増加への影響が顕著になるこ とが確認された。以上の結果は、一般的なセラミック ス系粒子添加型複合材料における、粒径、粒子体積率 と材料強度との関係と同じである。

Fig. 3 Effect of volume fraction and particle diameter on Brinell hardness.

3.2 摩耗特性

3.2.1 比摩耗量

Fig.4 に V_pと W_sの関係を示す。図から、W_sは 10⁻⁷ オーダーの値を示すことが分かる。これは、無潤滑下 において、ちょうどアブレシブ摩耗(W_s=10⁻⁵~10⁻⁷)⁽¹⁴⁾ と凝着摩耗(W_s=10⁻⁶~10⁻¹⁰)⁽¹⁴⁾で得られる W_sの値の

Fig. 4 Effect of volume fraction and particle diameter on specific wear rate.

境界に位置し、本研究の条件においては、上記の両方 の摩耗形態で摩耗が進行しているものと考えられる。 また、凝着摩耗としては、シビア摩耗(Ws = 107~ 10-8)(14)の形態であろうと推測され、試料にとって、厳 しい摩耗条件下での試験であったものと考えられる。 daが 110µm の場合を除いて、Vpは大きくなるほど、 また、daも大きくなるほど、Ws は小さくなる傾向を 示すことが分かった。Vpが 0.3 の場合、Wsは daに関 係なくほぼ一定の値を示した。ただし、da が 110µm の場合、Vpの増加に伴いWsは大きくなる傾向を示す。 これは、3.1 項で硬さが小さいことの理由を説明した と同様に、daが大きくなりすぎると、摩耗試験におい てもその接触圧力による Si 粒子の割れが積極的に起 こるようになってしまい、これが元で摩耗形態におい て、アブレシブ摩耗が占める割合が増加するためでは ないかと考えた。一般には、材料硬さの増加に伴い摩 耗量は減少することが予想されるが、本実験結果にお いては異なる結果を示した。つまり、本研究における 摩耗試験において、硬さ以外の要因が働いていること が示唆される。Wsに関しては、特にVpが小さい場合、 daは大きくなるほど有利であることが分かった。ただ し、da 増加の Ws 減少への効果は da 55µm が上限で あり、これ以上大きくなると Ws は大きくなることが 分かった。

3.2.2 摩擦係数

Fig.5 に da が 11µm および 55µm での試験時間(t)と µとの関係を示す。これは、時間軸に対して、実際に 実験中に測定した T と最終荷重より算出した刻々の F の値を式(2)に代入することで求めた値である。図から、 試験開始直後にµは大きな値を示し、その後は、ほぼ 一定の値を示すことが確認される。初期でµが高い値 を示す部分については、初期摩耗を示す部分で、その 後、定常摩耗へと移行するものと思われる。図の比較 から、da は大きい方が、初期摩耗の状態において比較 的小さい値を示すことが分かる。つまり、da が大きい 方が、短時間で安定した摩耗状態になるものと思われ る。また、da が 11µm と 55µm の場合を比較したとこ ろ、da が 11µm の場合の方が Vp 増加に伴う、µの減少

Fig. 5 Behavior of friction coefficient of Al-Si composite which Si-average particle diameter are (a)11µm and (b) 55µm during wear test.

率が大きいことが分かる。

Fig.6 に V_p と μ の関係を示す。ここでの μ の値は、 Fig.5 で示した μ の摩耗試験終了直前の値である。da に関係なく、Vp の増加に伴い μ は小さくなることが分 かった。daが 55 μ m、110 μ m の場合、V_p と μ の関係は ほぼ同じであり、また、V_pが 0.3 の場合には、da に関 係なく μ の値はほぼ同じ値を示した。da が 2.3 μ m、か ら 55 μ m までは、da が小さいほど、V_pが小さくなると きの μ の増加率は大きくなった。3.2 項の結果と合わせ て、da が 55 μ m までは、 μ と W₈の間に密接な関係が成 り立っている。しかし、da が 110 μ m の場合には、両 者の関係は一致しておらず、この原因として、先にも 説明したように摩耗形態の違いが挙げられる。

Fig. 6 Effect of volume fraction and particle diameter on friction coefficient.

3.2.3 摩耗形態

これまでの結果から、daの大小でその摩擦の機構が 異なることが予想され、以下のように考えた。摩擦機 構の概略図を Fig.7 に示す。da が小さい場合、Fig.7(a) に示すように、主に母相の破壊と表面層での剥離が起 こり、Si 粒子を含んだ母相が摩耗粉として輩出される 事で摩耗が進行するものと考えた。一方、da が大きい 場合には、Fig.7(b)に示すように、主に硬い Si 粒子が 摩耗を受け持つように作用するため、摩耗粉としては 主に Si の微粉が排出されるような機構ではないかと 考えた。このように考えた場合、da が大きいほどµは

Fig. 7 Schematic drawing of wear form of spark sintered Al-Si composite in case (a)Si-average particle diameter is small and (b)large.

小さくなり、また、摩耗量も小さくなる。

4 結言

放電焼結法によって、Si 粒子の粒径および体積率の 異なる Al-Si 複相合金を作製し、乾式での大越式摩耗 試験およびブリネル硬さ試験を行い、以下の結果を得 た。

(1) ブリネル硬度は、Si体積率が大きくなるほど、また、Siの平均粒径が小さくなるほど、大きくなった。 このとき、Si体積率増加に伴う硬度の増加率はSiの 平均粒径が小さいほど大きくなることがわかった。

(2) 摩擦係数は、粒径が大きくなるほど、また、Si 粒子体積率が大きくなるほど、小さくなることが分かった。

(3) 比摩耗量の値は 10⁻⁶~10⁻⁷の値を示し、これより 摩耗形態として、凝着摩耗とアブレシブ摩耗の組み合 わせによって摩耗が進行しているものと推測すること ができた。Si 粒径が 55µm までは、Si 体積率がおおき くなるほど、また、Si 粒径が大きくなるほど、比摩耗 量は小さくなった。これは、Si 体積率と Si 粒径の変 化に対する摩擦係数の変化と同様であり、以上のこと から、Si 粒径が小さい場合、母相の破壊そして Si 粒 子を含む表面層での剥離が起こる摩耗形態が考えられ、 一方、Si 粒子が大きい場合、主として Si 粒子が摩耗 を受け持つような摩耗形態になっているのではないか と考えた。Si 粒径が 110µm の場合、Si 体積率が大き くなると、比摩耗量は大きくなった。これは、Si 粒径 が大きくなりすぎると、摩擦中に Si 粒子の割れが積極 的に起こるようになり、割れた Si 粒子によるアプレシ プ摩耗が摩耗形態として支配的になったためではない かと思われる。

おわりに本研究を実施するに際して、摩耗リングの 加工等に使用した NC 旋盤および試料調整に用いた遊 星型ボールミルは、日本自転車振興会競輪機械工業資 金補助により整備したものであり、また、試料作製に 用いた放電焼結機は、経済産業省地域産業集積活性化 対策補助により整備したものであることを記し、関係 各位に深く感謝いたします。

参考文献

(1)
: Litejnoe Proizvodstvo
(2002) p.18-20.
(2)
Avtomob Prom-st' 41 (1975) p.34-36.
(3)A Ge'rard : Rev. Alum. (1976) p.325-330.
(4)神谷荘司:トライボロジスト 46 (2001) p.129.
(5)隠岐貴史、松木一弘、清水功史、柳沢 平:軽金属
52 (2002) p.243-249.
(6)野口 徹、宮城一裕、成田利勝、長岡金吾:鋳物
56 (1984) p.683-689.
(7)炭本治喜、中村幸吉:鋳物 55(1983) p.609-614.
(8)塩田俊雄、小松眞一郎:材料 30(1981) p.387-393.
(9)柳沢 平、諸隈真嗣、畑山東明、松木一弘:鋳造工
学 73 (2001) p.733-740.
(10)T.Sakamoto and H.Miura:材料技術 15(1994)
p.19.
(11)松木一弘、畑山東明、柳沢 平:日本金属学会誌
59 (1995) p.740-745.
(12)倉本英哲、松木一弘、畑山東明、柳沢 平:日本
金属学会誌 65(2001) p.868-873.
(13)倉本英哲、松木一弘、畑山東明、柳沢 平:日本
金属学会誌 67(2003) p.528-537.
(14)山本雄二、兼田楨宏 : トライボロジー、理工学社、
(1998) p.188-195.