無電解 Ni めっきした WC 粉末を用いた WC-(Fe-Ni)合金の作製

倉本 英哲 隠岐 貴史 安保 弘利1 松木 一弘1

無電解 Ni めっきを施した WC 粉末(WC/Ni 粉末)と純鉄粉末の混合粉を放電焼結することで、Fe - Ni 合金をバインダー相とする WC/Ni-x vol.%Fe(x=0~50) 超硬合金を作製し、その 機械的特性について調査した。得られた結果は以下のとおりである。

焼結温度を一度 923K で 2 時間保持し、その後 1273K に上昇させて緻密化するプロセスによって、均質な組織形態で、バインダー相が主としてオーステナイト化した Fe である高相対密度の WC/Ni- x vol.%Fe (x=10~50) 圧粉体を作成することができた。 x =30 の圧粉体で最大曲 げ強度 (σ_U) は最大となり、その値は約 1.9GPa であった。また、x に対する曲げ弾性率の変化挙動は、ナノインデンテーション試験より求められる WC 粒子及び各バインダー相の押込み弾性率を用いて、複合則によって表すことができた。

キーワード:WC系超硬合金、放電焼結、Fe-Niバインダー、最大曲げ応力

1. 緒言

周期表 IVa~VIa族に属する9種類の金属の炭化物 粉末を鉄(Fe)、コバルト(Co)、ニッケル(Ni)な どの鉄族金属を結合相として焼結結合した合金を総 称して超硬合金という。超硬合金は常温において高 硬度であり、優れた耐摩耗性を示す。このような特 性から、軸受けやメカニカルシール及び各種機器の 摺動部などに使用される。

一般に実用化され、流通している超硬合金として は、Coをバインダー相とするものが多く、これは、 Coをバインダーとした超硬合金の機械的性質をは じめとする諸特性や材料としての信頼性において優 れるためである。しかし、Coはその価格や流通の不 安定さから、代替えの結合相の登場が望まれており、 結合相を Ni や Fe などに代替えする試みが多くの研 究者によって行われている⁽¹⁾⁻⁽⁸⁾。

これまでに、筆者らは WC 粉末に無電解 Ni めっ きを施した WC/Ni 粉末を作製し、これを放電焼結す ることによって WC-Ni 合金を作成する方法を提案 した^{(9)、(10)}。この手法においては、めっき相が電流 経路となり、効率的で均質な焼結が可能であり、ま た、無電解 Ni めっき中に必然的に残存するリン (P) が Ni と共晶反応することで、1153K という非常に低 温での液相焼結が可能となり、真密度化することが できるものであった。しかし、Pの存在は Ni 中にお いて Ni₃Pを生成し、これはバインダー相の硬度を向 上させるものの、靭性を著しく低下させる。

WC/Ni 粉末を放電焼結した場合、液相化する Ni が流動相として働く緻密化挙動であると考えられた。 このような焼結挙動においては、WC 粒子同士は結 果として接触した状態となり、その空隙部分を Ni が埋めるような形となる。この手法によって作製さ れた WC-Ni 合金に負荷力が加えられた場合の変形 挙動では、WC 粒子同士の接触部は、破壊の起点と なる。実用合金系においては、その靭性が重要な要 素として取り上げられるが、バインダー相の脆化現 象と合わせて、WC/Ni 粉末を用いて作製した WC-Ni 合金は、実用合金として活用しにくい要素を持って いることになる。そこで、本研究においては、WC/Ni 粉末に Fe 粉末を混合することを考えた。これは、結 合相を Fe-Ni とすることと WC 粒子間距離を保って 変形挙動における干渉相を設けることを意図するも のである。Fe-Ni では、オーステナイト化すること が予想され、これによっては更なる靭性向上が期待 される。また、PはFeに固溶され、脆化に対する影 響を最小限とすることができる。

1広島大学大学院工学研究科

2.1 供試材料

純度 99.9%、粒径 6.4µm のアライドマテリアル㈱ 製 WC 粉末に無電解 Ni めっきを施したもの(本報 告において、以降 WC/Ni と表す)と純度 99.9%、粒 径 3-5µm の高純度化学研究所製純鉄粉末を使用した。 これらの供試粉末の走査電子顕微鏡(SEM)像を図 1 (a)、(b) に示す。無電解 Ni めっきは奥野製薬製 の低 Pタイプめっき浴のトップニコロン LPH を用い て行った。めっきはバッチ処理とし、膜厚が 0.2~ 0.3mm となるように調整した。結果として、WC に 対して 14wt.% (22vol.%)の Ni (-P)量になった。 なお、施工しためっきについての Ni に対する P量 は 5wt.%であった。図 1 (c) に WC/Ni 粉末の断面 SEM 観察結果示す。

図 1 供試粉末の SEM 観察結果 (a) WC/Ni 粉末、(b)純鉄粉末、(c) WC/Ni 粉末の断面

2.2 試料作製

作製した WC/Ni 粉末及び純鉄粉末を所定の配合 作比となるよう湿式混合し、それぞれ秤量して、放 電焼結法によって 12×52×t4 (mm)の寸法の板状 焼結体を作製した。板の両表面はダイヤモンド砥石 による研削加工を施した。焼結条件と作製した試料 の諸特性については後述する。本研究において、純 鉄粉末の添加量を体積比として0~50vol.%になるよ うにした。作製した試料の標記名とその配合比(体 積比及び重量比)について、表1に示す。

2.3 硬さ試験と曲げ試験

硬さ試験は2種類行った。

1 つは、JIS に規定されるロックウェル硬さ試験で ある。スケールはAスケールを選択した。

もう1つは、ナノインデンテーションである。 本研究における試料は硬質粒子とバインダー相か らなる二相材料であり、この試験によってそれぞ れの硬度を求めることとした。試験方法は ISO145 77-1 に準拠し、試験力は 100mgf とした。試験前 に溶融石英ガラスを用いて圧子先端補正を行った。 補正法は、田中法を用いた。

曲げ試験は3点曲げ試験方法で行い、圧子半径 (R1)を2mm、支持台半径(R2)を3mm、支点 間距離(L)を40mmとし、クロスヘッド速度(V) は0.5mm/minの条件で試験を行った。

Representation	Samples	Volume Ratio (vol.%) WC : Ni : Fe	Weight Ratio (wt.%) WC : Ni : Fe
WNF0	WC/Ni	78:22:0	86:14:0
WNF10	WC/Ni ⁻ 10vol.%Fe	70:20:10	80.8:13.3:5.9
WNF20	WC/Ni ⁻ 20vol.%Fe	62.4:17.6:20	75.5:12.2:12.3
WNF30	WC/Ni-30vol.%Fe	54.6:15.4:30	69.4:11.2:19.4
WNF40	WC/Ni ⁻ 40vol.%Fe	46.8:13.2:40	62.7:10.1:27.2
WNF50	WC/Ni ⁻ 50vol.%Fe	39:11:50	55.2:8.9:35.9

表1 試料成分の体積比と重量比(%)

3.1 焼結特性

本研究における放電焼結プロセスは、均質焼結促 進を目的として、焼結圧力が40MPa、on/off 時間が それぞれ100ms、パルス電流が100Aの矩形波パル ス通電を予備焼結として900s行い、その後、所定の 条件による連続パルス通電を行った。連続パルス通 電の条件については、WC/Ni合金の焼結において実 績のある1273K下で3.6ks保持する条件とした。こ のとき得られるWNF0とWNF50の焼結曲線を図2 に示す。

図において、WNF50 の曲線が WNF0 と比較して、 低温で密度が向上していることが分かる。低温側で 密度が向上する理由としては、Fe の塑性変形が考え られる。WNF0 では、Ni-P の共晶点である 1153K 近 傍において急激にその相対密度向上が見られ、その 後、図中丸印で示す部分において、もう一度焼結速 度が変化するポイントを確認することができる。こ れは、Ni-P 相の液相化が進んで、焼結体の真密度化

図2 焼結温度を1273K、焼結温度保持時間を.6ks とした場合の焼結体温度と相対密度の関係

図 3 試料断面の組織観察結果 (a)WNF0、(b)WNF50

が進んでいると考えることができる。WNF50におい ても、図中丸印で示すように同様の焼結挙動を確認 することができるが、このとき、その温度が高温側 に移動していることが分かる。これは、Feの添加に よって、Ni中のPがFeに拡散することがあれば、 Niに対してのP量の低下によってその液相化挙動が 焼結挙動として遅れる形で表れたためではないかと 考える。どちらにしてもNi-P相の液相化が起こって おり、その真密度化に寄与しているものと考えられ た。以上の焼結条件において得られた試料断面の組 織観察結果を図3に示す。

図から、WNF0 は均質な組織となっているが、 WNF50 では WC 粒子の凝集が存在し、空孔も多数 残っていることが確認される。これは、WNF50 では Fe 粒子が存在するために、また、Fe 粒子が液相化す ることは無いため、WC-WC、WC-Fe、Fe-Fe 粉末間 でその隙間が 0 となりにくく、液相化した Ni-P が流 出していく隙間が存在する状態となり、特に偏析部 分において Ni-P が不足となって、最終的には空隙も 多く確認される結果となったと考える。

この結果において、鉄粉末を添加する場合、Ni-P の液相化挙動が直接的には緻密化の安定性に寄与し ないことが分かる。また、前述したようにバインダ ー相のオーステナイト化も達成することを考え、本 研究においては、図4に示すように、まず無電解 Ni めっきの結晶化開始温度である 573~773K と Ni-P の共晶温度である 1153K との間で目安として 923K を設定し、この温度で 120 分温度保持して Ni-P の鉄 中へ拡散と Ni めっき層の塑性変形を促すことを意

図し、その後に緻密化を目的として 1273K に昇温し て焼成する焼結プロセスを提案した。小原ら⁽¹¹⁾によ ると、無電解 Ni めっき法による Ni-P-Fe 圧粉体の焼 結において、Fe 中への Ni の拡散が P によって促進 され、短時間で Fe 中へ Ni が拡散するという機構を 推定している。

図5に図4で提案した焼結プロセスにおける圧粉 体の組織変化を示し、図6に EPMA分析結果を示す。 観察は図4中A、B、Cで示す部分において、焼結 を中断して圧粉体を取り出し、この試料の断面中心 部において行った。図5(a)においては、バインダ ー相中において、微小の空隙の存在が確認される。 これは、FeとNi-P、FeとFe、Ni-PとNi-Pのそれぞ れの接触形態から生成される空隙が、それぞれ存在

図 5 図 4 に示す放電焼結過程で焼結した場合 の組織変化 (WNF50)

(a)A 点、(b)B 点、(c)C 点(図 4 中) (a)

図 6 図 5 の部分における EPMA 分析結果 (a)A 点、(b)B 点(図 4 中)

する状態であることを示している。図 6(a)の EPMA 分析結果においても、WC 粒子周辺で Ni が存在し、 WC/Ni 粉末の形態を維持していることが確認される。 これが図 5 (b)の観察結果から、空隙は確認される ものの、図 6(b)に示す EPMA 分析の結果において、 Ni が Fe 粒子側に移動をしていることが分かる。P はNiよりもFeへの拡散は早いことが予想されるが、 濃度の低さから EPMA 分析ではその挙動を確認する ことができなかった。しかし、P は Ni の拡散を促す ような挙動を示したと考え、この結果から 120 分の 保持時間によっては、Ni-P の拡散と塑性変形を促す ことができたと推測する。最後に、図 5 (c) におい ては、温度を上げて焼成することで、図 5 (b) で確 認されたような空隙は小さくなって、非常に密度の 高い状態に緻密化されたことが確認される。

図7に焼成完了後の試料におけるX線回折結果を 示す。Feの添加量によって、僅かに比率の変化はあ るものの、Feを添加したどの試料においても、基本 的にはγ-Feを検出した。この結果において、Ni単 相やC化合物及びP化物などは、ほとんど確認され なかった。WCとFeは反応性が高く、W-Fe-C化合 物を生成してしまうことがよく知られている⁽¹²⁾。 本実験で作製した試料においてそれらの化合物は確 認されておらず、これは、無電解Niめっきの特性を 有効に利用して、比較的低温の焼結プロセスのため であると考える。詳細の分析によれば、W-Fe-C化合 物やP化物が検出されるかもしれないが、本研究に おいて作製した試験片について、WC粒子はほとん

図7 焼結完了後の各サンプルのX線回折結果

ど変質しておらず、また、バインダー相の大部分が オーステナイト化した Fe であった。

図 8 に Fe の添加量の違いによる WC-(Fe-Ni)合 金の組織形態の違いを示す。どの試料についても、 比較的均質の組織形態を示している。Fe の添加量が 大きくなるほど、バインダー相の相対的な量は増え、 WC 粒子間の間隔は大きくなっていき、WC 粒子同 士の接触の数は小さくなっている。

図8図4で示したプロセスによって作製した試料 の組織観察結果 (a)WNF10、(b)WNF20、(c)WNF30、 (d)WNF40、(e)WNF50

3.2 硬度特性

図9にAスケールロックウェル硬さ試験の結果を 示す。Feの添加量の増加に伴い、硬度が低下してい ることが分かる。これは、バインダー相の組成の違 いによる硬度の変化もあるが、主としては相対的な WC粒子の量的な差が影響していると考える。

次に、ナノインデンターによる組織ごとの硬さ試 験結果を表2に示す。本試験においては、WC粒子 単体、バインダー、それぞれについて試験を行い、 その特性評価を行った。

ここで、HM はマルテンス硬さ、EIT は押込み弾性

図 9 ロックウェル硬さ試験結果(A スケール)

表 2 ナノインデンターによる硬さ試験結果

sample	HM (MPa)	E it (GPa)
WC powder	16910	500.1
Binder phase of WNF0	4695	353.8
Binder phase of WNF10	4340	240.2
Binder phase of WNF20	3491	231.2
Binder phase of WNF30	3254	218.3
Binder phase of WNF40	3164	216.7
Binder phase of WNF50	3789	204.2

率である。バインダー相について、HM 及び E_{IT} とも に、 V_{Fe} の増加に伴い低下する傾向があった。ただ し、結果として、WNF50 の HM は傾向から考える と高い値を示した。Ni-Pの、特にPの存在によって、 Ni、Fe との間でのP化物の存在が皆無とはならない。 P 化物が微小粒子として存在することによっては、 その硬さが大きくなることは想像しやすい。このこ とから、 V_{Fe} の増加に伴い P 量は相対的に小さくな り、HM 及び E_{IT} が小さくなっていくことが考えやす い。WNF50 の HM が高い値を示すことについて、 理論的な理由が考えにくく、これは試験結果のばら つきの範囲を超えないものかもしれない。実際、HM 及び EIT も含めて、WNF20 より Fe の添加量が大き くなってくると、試験結果はばらつきの範囲に収ま る傾向があった。ただし、WNF0 と WNF10 につい ては、明らかに HM 及び EIT の低下傾向を示してお り、前述の理由によるものを想像しやすい結果であ った。WC 粒子の HM については、バインダー相の 4 倍、EIT については3 倍程度の値であり、マクロで 考えた場合には、WC の相対的な量が、WC-(Fe-Ni) 合金の硬さや弾性率に大きな影響を及ぼすことは想 像しやすい。

3.3 曲げ特性

図10に各試験片の3点曲げ試験における曲げ応力 - ひずみ線図を示す。WNF0、WNF10、WNF20は弾 性域で破断した。しかし、Feの添加量が30vol.%以 上で、塑性変形領域で破断することが分かる。

図 11 に図 10 で示した試験結果より得られる最大 曲げ応力 (σ_U) と V_{Fe}の関係を示す。

図から、 V_{Fe} が 0.3 で σ_U は最大となり、約 1.9GPa と高い値を示した。市販の WC-Co 系超硬合金につ いて、 σ_U は 3GPa 程度であり、若干劣ることは否定 できないが、バインダー代替型の WC 系超硬合金と して、また、粗粒の WC 粉末を用いたことを考慮す れば、十分の強度を確保したといえる。表 3 に様々 なバインダー代替型 WC 系超硬合金の抗折力につい てまとめたものを示す。

表3に示したバインダー代替型 WC 系合金は一例 であるが、そのどれもの抗折力は WC-Co 系に劣っ

図 11 Fe 添加量と最大曲げ応力の関係

ている。しかし、それぞれ耐食性、耐熱性等の機能 性を付加されているものであり、本研究における WC/Ni-xvol.%Fe については、その焼結性と変形能に 注目される。焼結性については表3の比較において も明らかなように、また、WC-Co系も含めてWC系 超硬合金の焼結温度として、一般的に1400~1700K 程度の温度が選択されることからも、WC/Ni-x vol.%Fe 合金では非常に低温での緻密化を達成して おり、焼結性が優れると言える。この特性について は、省エネルギー技術として考えることができ、ま た、高温炉の必要性が無いことから、市場において 汎用性が高くなることが期待される。

図 10 において、 V_{Fe} =0.3 以上でその破壊に至る変 形領域が変化したことが確認される。WNF0、WNF30、 WNF50 の破断面の観察結果を図 12 に示す。曲げに おける引張側で、起点側と考えられる部位の近傍に ついて、走査型電子顕微鏡(SEM)による観察とそ の断面についての顕微鏡観察を行った。

図 12 (a)、(b)、(c) から、WNF0、WNF30、WNF50 のそれぞれ基本的な破壊機構は、粒界破壊によるも のであることが分かる。ただし、図中白丸で示すよ うに、WNF30、WNF50 においては、破面上にディ ンプルパターンを確認することができる。つまり、 変形、破壊の過程において、延性的な挙動を示した ものと考えられる。

図 12 (d)、(e)、(f)から、破面上の粒界破壊は、 バインダー相と WC 粒子界面のはく離が主であるこ とが分かる。結果として、WNF0 においては、ほぼ

Composition	Sintering Temp., K	Particle size, µm	συ, GPa	Reference
WC/Ni-30vol.%Fe	1273	6.4	1.9	This work
WC-24wt%Ni	1573	$\sim \! 0.5$	2.5	(13)
WC-11.5wt% FeAl	1423	2.0	1.8	(14)
WC-37mass%Fe	1513-1553	5	2.3	(15)

表3 各種の WC 系超硬合金の抗折力

図 12 破面の SEM 観察結果と断面顕微鏡観察結果 (a),(d)WNF0、(b),(e)WNF30、(c),(f)WNF50

粒界破壊しか見られないことから、強度は WC 粒子 とバインダー相の間の接合強度に依存すると考えら れる。WNF30 においては、図 12 (e) 中丸で示す部 分において、WC 粒子の割れが確認される。WNF30 では、WNF0 と比較して、WC 粒子とバインダー相 の間の接合強度が強いと考えられる。WC 粒子の強 度はバインダー相よりも強いことは明らかで、これ が積極的に機能することで、最大の強度を得ること ができたと考えられる。WNF50 においては、図 12 (f) 中丸で示す部分で確認されるように、バインダ ー相中をクラックが伝播しており、また WNF30 と 比較すると WC 粒子の割れが少ない。これは、WC 量の低下によって、バインダー相が積極的な変形を するようになり、これに強度が依存したことを示し ていると考えられる。

以上から変形・破壊挙動をまとめると、Feの添加 量が少ない場合には、WC 粒子界面における粒界破 壊を主とし、脆性破壊の機構となる。Feの添加量が 大きくなるにしたがい、バインダー相の積極的な変 形が見込まれ、また、WC 粒子界面強度も向上する ことで、変形能が向上し、部分的には延性的な変形・ 破壊挙動を示すようになる。Fe の添加量が多すぎる と、主たる変形のサイトはバインダー相となり、延 性的な破壊挙動は示すものの、その強度は低下した ものと考えられる。延性的な挙動は、実用化におい て、その材料の信頼性を向上させるものであるが、 本研究における WC/Ni-x vol.%Fe 合金においては、 図 11 中にも示すように、x=30 が延性脆性遷移の境 界として扱われるものであり、この境界上において 最大の抗折力を示すものであった。

図 10 において、試験開始後から見られる直線部 分は弾性領域であり、この傾きは曲げの弾性率とし て扱うことができる。つまり、剛性は、Feの添加量 の増加に伴い低下していると言える。図 13 に V_{Fe} と曲げ試験から得られた曲げ弾性率 E_bの関係を示 す。図より、V_{Fe}の増加に伴い弾性率が低下してい ることが分かる。ここで、表2に示すように、ナノ インデンターによる硬さ試験では、WC 粒子及び各 バインダー相について、それぞれ押込み弾性率を測 定しており、この値と複合則を用いることで、その 弾性率を表すことができるかを検討した。

図 13 Fe 添加量と曲げ弾性率の関係

2相の複合材料における複合則は式(1)のように 表すことができる。

$$\boldsymbol{\sigma} = \boldsymbol{\sigma}_1 \mathbf{V}_1 + \boldsymbol{\sigma}_2 (1 - \mathbf{V}_1) \tag{1}$$

ここで、 V_1 は第1相の体積率であり、 σ_1 、 σ_2 は、 それぞれ第1、第2相固有の応力である。 $\sigma = \epsilon E で$ あることから、式(1)から弾性率(E)は式(2) で表される。

$$E = E_1 V_1 + E_2 (1 - V_1)$$
 (2)

ここで、 E_1 、 E_2 は、それぞれ第1、第2相固有の 弾性率である。式(2)において、表1、2より、 V_1 にWC粒子の体積率、 E_1 にWC粒子の押込み弾性率、 E_2 にそれぞれのバインダー相の押込み弾性率を代 入して、計算を行った。結果を図13中破線で示す。 式(2)による計算結果について、 V_{Fe} の変化に伴う E_b の変化挙動については、良く一致するものであっ た。しかし、絶対値としては計算結果が、約150GPa ほど大きな値を示している。これは、押込み弾性率 が必ずしも材料固有の縦弾性率を正確に表すもので はないことや、また、実際の曲げ試験においては、 引張だけでなく圧縮の挙動も含まれる可能性が高く、 これらの影響によって、絶対値に差異が表れたもの ではないかと考える。

以上の結果において、様々の要因から考えられる 絶対値の誤差を補正することができるならば、他の 複相材料と同様に、複合則によってその抗折力は推 測することができ、材料強度を設計できるものと考 える。

4. 結言

無電解 Ni めっきを施した WC 粉末 (WC/Ni 粉末)
 と純鉄粉末の混合粉を放電焼結することで、Fe - Ni
 合金をバインダー相とする WC/Ni- x vol.%Fe (x=0
 ~50) 超硬合金を作製し、その機械的特性について
 調査した。得られた結果は以下のとおりである。

(1) 1273Kを焼結温度とし、一度に昇温、温度保持

するプロセスを採用した場合、無電解 Ni めっき中に 含まれる P との共晶反応により Ni めっき相が液相 化し、また、Fe の添加によって WC 粒子間の粒子間 隔が保持される状況で、Ni の流出が起こり、組織中 に空隙と偏析を引き起こす結果となった。

そこで、焼結温度を一度 923K で 2 時間保持し、 その後 1273K に上昇させて緻密化するプロセスを提 案し、実施したところ、923K での保持中に Ni の Fe 中への拡散が起こり、その後の昇温においては Ni の流出は防がれ、均質な緻密化を達成した。ここで バインダー相は、主として Ni の添加によってオース テナイト化した Fe となっていた。

 (2) WC/Ni-x vol.%Fe (x=0~50) 圧粉体のロック ウェル硬さ (A スケール) は、Fe の添加量が大きく なるほど小さくなった。また、ナノインデンテーシ ョン試験の結果から、バインダー相の硬度は、やは り Fe の添加量が大きくなるほど小さくなる傾向を 示すことが分かった。

(3) WC/Ni- x vol.%Fe (x=0~50) 圧粉体の曲げ試 験において、x=0~20%の範囲では、弾性域で破壊 した。このとき、Fe の添加量が大きくなるほど最大 曲げ応力 (σ_{U}) は大きくなった。x =30 では、塑性 変形し、 σ_{U} は最大値として約 1.9GPa となった。さ らに x が大きくなると、やはり塑性変形するが、 σ_{U} は小さくなった。

また、x に対する曲げ弾性率の変化挙動は、ナノ インデンテーション試験より求められる WC 粒子及 び各バインダー相の押込み弾性率を用いることで、 複合則によって表すことができた。

おわりに、本研究を実施するに際して使用した超 微小押込み硬さ試験機(ナノインデンテーションテ スター)、摩耗リングの加工に使用した NC 旋盤は財 団法人 JKA(旧日本自転車振興会)競輪機械工業資 金補助により整備したものであることを記し、関係 各位に深く感謝いたします。

参考文献

 H.Kim, I. Shon, J.Yoon, J.Doh and Z.Munir, Int. J. Refract Met & Hard Mater 24(2006) p.427-431.

- (2) S.Kursawa, P.Pott, H.G.Sockel W.Heinrich and M.Wolf, Int. J. Refract Met & Hard Mater 19(2001) p.335-340.
- (3)藤崎和弘、落合宏、高田寿明、鵜飼隆好、但 野茂、日本機会学会北海道支部講演会概要集
 41 (2001)、p.2-3
- (4) 福永稔、町田正弘、小林慶三、尾崎公洋、粉体 および粉末冶金48(2001)、p.616-620
- (5)坂村勝、兼広二郎、鈴木寛、藤井敬二、水成重順、矢田貝稔、広島県立東部工業技術センター研究報告13 (2000)、p.29-33
- (6) 宮崎邦彰、伊藤滋、小浦延幸、米田登、浅香一 夫、粉体および粉末冶金 37 (1990)、 p.219-224
- (7) H.Sheinberg, Int. J. Refract Met & Hard Mater 2(1983)17-26.
- (8) 貞廣孟史、満田哲也、高津宗吉、粉体および粉 末冶金 29(1982)、 p.222-226
- (9) H.Kuramoto, T.Oki, K.Matsugi and O.Yanagisawa, Annual Reports of Hiroshima City Industrial Technology Center 21 (2006) p.27-33.
- K.Matsugi, H.Abo, Y.B.Choi, G.Sasaki, H.Kura
 -moto, T.Oki and O.Yanagisawa, J. Jpn. Soc.
 Powder Powder Metallurgy 56 (2009) p.51-60.
- (11)小原嗣郎、立沢清彦、粉体および粉末冶金 34(1987)、 p.118-122
- (12) W. Shi-Zhong, L. Yan, G. Jian-Ping, J. Ying-Ping, Key Eng Mater 368/372 Pt.2 (2008) p.1606-1608.
- (13) A.V.Laptev, A.I.Tolochin and L.F.Ochkas, Pow -der Metallugy and Metal Ceram. 43 (2004) p.1-2.
- (14) 小林慶三、尾崎公洋、多田周二、西尾敏幸、
 安井幸栄、粉体および粉末冶金 55 (2008)、
 p.593-598
- (15) 宮腰康樹、高澤幸治、田頭孝介、鴨田秀一、 高橋英徳、粉体および粉末冶金 49 (2002)、 p.183-188