無電解 Ni めっきした WC 粉末を用いて作製した WC-(Fe-Ni)合金の摩耗特性

倉本 英哲、隠岐 貴史、安保 弘利¹、松木 一弘¹

無電解Niめっきを施したWC粉末(WC/Ni粉末)と純鉄粉末の混合粉を放電焼結することで作製したWC/Ni-x vol.%Fe(x=0~50)超硬合金の乾式摺動特性を調査した。摩耗試験はリングオンディスクタイプで行い、試験中の押し付け荷重(F)は一定とし、F=98Nと19.6Nの2種類の試験条件とした。得られた結果は以下のとおりである。

定常摩耗の領域で、比摩耗量(Ws)はリングの押し付け荷重に関係なく、材料ごとで一定の値を示した。得られた比摩耗量について、結合相およびWC粒子それぞれのマルテンス硬さ(H₁およびH₂)とWC粒子体積率V_{f(WC)}を用いることで、下式によって整理することができた。

$$W_{s} = \frac{C_{1}}{H_{1}} (1 - V_{f(WC)}) + \frac{C_{2}}{H_{2}} V_{f(WC)}$$

ここで、 C_1 および C_2 は、それぞれ結合相およびWC粒子の摩耗係数であり、単純には小さいほど耐摩耗特性に優れることを示す。本研究において得られた C_1 と C_2 の間には1オーダーの差があり、WC粒子の方が優れるものであった。

キーワード:WC系超硬合金、放電焼結、Fe-Ni結合相、比摩耗量

1. 緒言

周期表IVa~VIa族に属する9種類の金属の炭化物 粉末を鉄、コバルト、ニッケルなどの鉄族金属を結 合相として焼結結合した合金を総称して超硬合金と いう。超硬合金は常温において高硬度であり、優れ た耐摩耗性を示す。このような特性から、軸受けや メカニカルシールおよび機器の摺動部等に使用され る。

一般に実用化され、流通している超硬合金は、Co をバインダー相とするものが多い。これは、Coをバ インダーとした超硬合金の機械的性質をはじめとす る諸特性や材料としての信頼性において優れるため である。しかし、Coはその価格や流通の不安定さか ら、代替えの結合相の登場が望まれており、結合相 をNiやFe等に代替えする試みが多くの研究者によっ て行われている⁽¹⁾⁻⁽⁸⁾。

1 広島大学大学院工学研究科

前報⁽⁹⁾で、無電解NiめっきしたWC粉末とFe粉末の 混合粉を用い、焼結温度を一度923Kで2時間保持し、 その後1273Kに昇温して30分保持するという放電焼 結プロセスによって、非常に均質な組織形態で、最 大抗折力が1.9GPaになるWC-(Ni-Fe)系超硬合金の作 製が可能となった。作製したWC-(Ni-Fe)系超硬合金 は、Feの添加量を体積率で10~50vol.%の範囲でコン トロールしており、最大抗折力は鉄の添加量が 30vol.%のときに最大となった。これは、ちょうど延 性脆性遷移の境界となる体積率であった。

炭化物系サーメット等は、鉄等の一般的な金属と 耐摩耗性を比較した場合はるかに優れている。一般 的超硬合金も含めて、炭化物系サーメット等を金属 系の結合相で焼結結合したものは、基本的に金属 -セラミックス系複合材料として考えることができ、 このとき、炭化物系サーメットの体積率が、その合 金系の耐摩耗特性に直接的に影響すると考えられる。 前報において作製した WC-(Ni-Fe)系超硬合金で、Fe の添加量を変化させると、結果として WC の体積率 が変化することになる。本報告では、作成した WC-(Ni-Fe)系超硬合金について、バインダー相の特 性に注目しながら、その乾式摺動特性について調査 した。

2. 実験方法

2.1 試験片

純度 99.9%、粒径 6.4μ mのアライドマテリアル(㈱ 製 WC 粉末に無電解 Ni メッキを施したもの(以下 WC/Ni と表す)と純度 99.9%、粒径 $3-5\mu$ mの高純度 化学研究所製純鉄粉末を使用した。無電解 Ni メッキ は奥野製薬製の低 P タイプめっき浴のトップニコロ ン LPH を用いた。メッキはバッチ処理とし、膜厚が $0.2\sim0.3\mu$ m となるように調整し、WC に対して 14wt.% (22vol.%)の Ni (-P)量になった。なお、 施工したメッキの Ni に対する P 量は 5wt.% であった。

WC/Ni 粉末および純鉄粉末を所定の配合比で湿 式混合、秤量し、放電焼結によって12×52×t4 (mm) の板状焼結体を作製した。放電焼結は、均質焼結促 進を目的とする予備焼結として、焼結圧力 40MPa、 on/off 時間 100ms、電流値 100A の矩形波パルス通電 焼結を 900 秒間行った後、焼結圧力はそのままとし て、焼結温度 923K で 120 分、引き続いて 1273K で 30 分の連続パルス通電焼結を行うプロセスとした。 作製した板状試験片の両表面はダイヤモンド砥石に よる研削加工を施した。 本研究において、純鉄粉末の体積比は、0~50vol.% とした。作製した試料の標記名とその配合比(体積 比および重量比)を表1に示す。

図1に作製した合金 WNF(0~50)の顕微鏡組織 観察結果を示す。Feの添加量が増えることで、相対 的な WC 粒子の量は減っていき、また、WC 粒子同 士の接触の数は小さくなっていることが確認される。

図 1 作製した試験片の顕微鏡観察像 (a)WNF10、(b)WNF20、(c)WNF30、 (d)WNF40、(e)WNF50

Representation	Samples	Volume Ratio (vol.%) WC : Ni : Fe	Weight Ratio (wt.%) WC : Ni : Fe
WNF0	WC/Ni	78:22:0	86:14:0
WNF10	WC/Ni-10vol.%Fe	70:20:10	80.8 : 13.3 : 5.9
WNF20	WC/Ni-20vol.%Fe	62.4 : 17.6 : 20	75.5 : 12.2 : 12.3
WNF30	WC/Ni-30vol.%Fe	54.6 : 15.4 : 30	69.4 : 11.2 : 19.4
WNF40	WC/Ni-40vol.%Fe	46.8 : 13.2 : 40	62.7 : 10.1 : 27.2
WNF50	WC/Ni-50vol.%Fe	39:11:50	55.2 : 8.9 : 35.9

表1 試料成分の体積比と重量比(%)

2.2 摩耗試験

摩耗試験方法は、リングオンディスク方式の大越 式摩耗試験機を用いて行った。大越式摩耗試験は回 転円盤(SUJ2製)を平板試験片に押し付けて摩耗さ せる摩耗試験である。なお、回転円盤は熱処理を行 わず、鋼棒より切り出したままのもの(焼きなまし 材)を用いた。その硬度はHRC10相当である。この 摩耗試験機と試験方法の概略図を図2に示す。

図2 摩耗試験機と試験方法の概略図

本研究では、図2に示すようにおもりを用い、リン グを平板試験片に押し付ける荷重を一定とした一定 荷重条件での試験とした。このときの押し付け荷重 (F)は98Nおよび19.6Nとした。また、摩耗速度は

0.59m/sを選択し、試験片に関わらず一定とした。な お、試験はすべて乾式で行った。

本摩耗試験においては、試験終了後の摩耗痕幅 (b)の測定を行うことで、摩耗量(W)を以下の幾 何学的近似式によって算出することができる。

$$W = \frac{Bb^3}{12r} \tag{1}$$

ここで、rおよびBは、それぞれ回転円盤の半径 (mm)および回転円盤の厚さ(mm)である。本研 究において、r=15、B=3.0である。本報告における摩 耗量は試験終了後に摩耗痕幅を測定し、式(1)によ って算出した値である。

3. 実験結果および考察

図3に実際に行った摩耗試験における摩耗距離 (L)と摩耗量(W)の関係を示す。

(a)F=98N, (b)F=19.6N

図3から、摩耗距離の増加に伴い、摩耗量は増加し、 また、押し付け荷重が大きくなると、摩耗距離に対 する摩耗量が増加することが分かる。このとき、そ れぞれの試験片、試験条件ごとに、摩耗量は、摩耗 距離に対して比例関係を示している。

図4は、図3(a)よりWNF40の試験結果のみを抜 粋したものである。一般的に、摩耗量(W)と摩耗 距離(L)および押し付け荷重(F)の間には、以下 の関係が成り立つことが知られている⁽¹⁰⁾。

$$\mathbf{W} = \mathbf{W}\mathbf{s} \cdot \mathbf{F} \cdot \mathbf{L} \tag{2}$$

(図はWNF40, F=98Nの試験結果)

ここで、Wsは比摩耗量である。図3、図4に示され る実験結果において、L=0の時に W=0 となっていな い。物理現象としては L=0 の時に W=0 となるはず であり、実験結果において、このことが達成されて いないことは、本磨耗試験方法においては、試験開 始直後の非常に短い時間内に一気に摩耗が進行する 過程があることを示している。これは L=0 の時の試 験片(板)とリングとの接触方法において、断面で 見たときには点接触となっており、その接触圧力は 無限大となっている。また、試験開始からまもなく は非常に接触応力が大きい状態となっていることが 考えられ、このようなとき接触面においては、摩耗 というよりも破壊が起こっているのではないかと推 測する。ただし、この瞬間的な破壊の後は、定常的 な摩耗状態となっていると考えることができ、初期 の破壊現象による一気の摩耗増加量を初期摩耗量 (W₀) として、式(1) を本研究においては式(2)

$$\mathbf{W} = \mathbf{W}\mathbf{s} \cdot \mathbf{F} \cdot \mathbf{L} + \mathbf{W}_0 \tag{3}$$

に置き換えて、実験結果を整理することとする。

なお、定常摩耗過程においては、式(1)と式(2) のWsは同じ値になる。また、 W_0 の物理的な意味は、 接触圧力が非常に大きな範囲においての表面層近傍 での破壊の量を表しているもので、試験片の強度に 依存する定数となる。 図5にF・LとWの関係を示す。やはり、F・LとW の間に直線関係が成立していることが確認される。 このとき、式(2)より、直線の傾きはWsに相当し、 また、F・L=0の時のWはWoになる。求めたWsおよ びWoを表2に示す。

図5 F・L と摩耗量の関係 (a)F=98N, (b)F=19.6N

図6にWsとWC粒子体積率の関係を示す。

リングの押し付け荷重に関わらず、比摩耗量は WC粒子体積率のみに依存して一定の値を示し、ま た、WC粒子体積率の増加に伴い比摩耗量は減少し た。

Wsは、ブリネル硬さやビッカース硬さの値を用いて、式(4)の形で表される。

$$W_{S} = C / H$$
 (4)

ここで、Cは摩耗係数、Hはブリネル硬さもしくはビ ッカース硬さの値である。式(4)は、降伏応力に関連 する形で、相対的な表現による押し込み硬さを使用

	F=98N		F=19.6N	
Samples	Ws	W_0	Ws	W ₀
	$(\times 10^{-9} \text{mm}^2/\text{N})$	(mm^3)	$(\times 10^{-9} \text{ mm}^2/\text{N})$	(mm ³)
WNF10	1.085	0.294	1.038	0.089
WNF20	1.211	0.292		
WNF30	1.555	0.263	1.515	0.119
WNF40	1.830	0.231		
WNF50	2.289	0.085	2.162	0.136

表2 比摩耗量と初期摩耗量

図 6 WC 粒子体積率と比摩耗量の関係

することで、比摩耗量を標準化しようとしていると 考えることができる。ここで、本研究における試験 片は、大まかには WC 粒子と金属結合相からなる二 相の複合的な材料であり、それぞれの相は異なる硬 さを示す。

ここで、式(4)において、それぞれの体積率を 考慮する形で、比摩耗量についての複合側を考え、 式(5)を提案する。ただし、この式においては、各 相における硬さの値が必要である。ブリネルもしく はビッカース硬さについては、他の影響を排除した 形での各相単体の硬さの値を示すことは不可能であ る。そこで、硬さの値について、超微小硬さ試験に よるマルテンス硬さを用いることとする。マルテン ス硬さについても、やはり押し込み硬さ試験であり、 これも材料の降伏応力と関係し、相対的硬度値を示 すものである。

$$W_{s} = \frac{C_{1}}{H_{1}} (1 - V_{f(WC)}) + \frac{C_{2}}{H_{2}} V_{f(WC)}$$
(5)

C₁およびC₂は、それぞれ結合相およびWC粒子の 摩耗係数であり、H₁およびH₂はそれぞれ結合相およ びWC粒子単体のマルテンス硬さである。下表に前 報⁽⁹⁾で報告したそれぞれの試験片の結合相および WC粒子のマルテンス硬さを示す。

表3 結合相およびWC粒子のマルテンス硬さ⁽⁹⁾

sample	HM (MPa)	
WC powder	16910	
Binder phase of WNF0	4695	
Binder phase of WNF10	4340	
Binder phase of WNF20	3491	
Binder phase of WNF30	3254	
Binder phase of WNF40	3164	
Binder phase of WNF50	3789	

このマルテンス硬さと式(5)によって、 W_s を算 出した結果を図6中に示す。結合相およびWC粒子の 摩耗係数を、それぞれ C_1 =1.16×10⁻⁵および C_2 =0.28 ×10⁻⁵とするとき、式(4)は実験結果とよく一致す ることが確認される。 C_1 および C_2 の物理的な意味合 いについては、今後の検討課題であるが、式の展開 からも、単純には小さいほど耐摩耗特性に優れると 言え、WC粒子とFe-Ni系の金属結合層を比較したと き、1オーダーの差があった。なお、本研究における C_1 、 C_2 は、実験結果より重回帰分析を用いて算出したものである。

図7にWC粒子体積率と初期摩耗量(W₀)との関係を示す。

図7 WC 粒子体積率と初期摩耗量の関係

WNF50 ($V_{f(WC)}$ =0.39)の試験片以外では、リングの押し付け荷重 (F)が大きいときに W_0 は大きくなっている。F=19.6Nのとき、WC粒子体積率 ($V_{f(WC)}$)が大きくなるほど、 W_0 は小さくなっている。しかし、F=98Nの場合には、 $V_{f(WC)}$ が大きくなるに従い、 W_0 も大きくなっている。

ここで、前報⁽⁹⁾の試験結果より、曲げ弾性率(E_b) は、 V_{fWC} が大きくなるほど、大きくなる。試験片自 体の破壊が発生しない場合、E_bは大きくなるほど圧 縮強度は大きくなると考えられる。前述のように、 W_0 が試験片強度に依存すると考える場合、特に圧縮 強度に依存するものであり、これは接触部とその近 傍が、接触によって変形し、これとリングの相対運 動によって、破壊していくことが考えられる。この とき、単純には $V_{f(WC)}$ は大きくなるほど圧縮強度が大 きくなるために、変形と破壊による初期の摩耗量に ついては小さくなると考えられる。F=19.6Nの場合 には、この傾向が実験結果として表れている。

押し付け荷重が大きい場合に、その接触圧力は大 きくなり、WC粒子については、粒子割れ等が起こ ることが考えられる。このとき、WC粒子が多いほ ど、粒子割れの起こる可能性は大きくなり、割れた 粒子については、摩耗粉として排出されることで摩 耗量が大きくなる。また、WC粒子が多いほど、WC 粒子同士の接触部の数は多く、これはクラック伝播 のサイトとして働き、発生したクラックが伝播しや すいことが考えられる。本研究において、F=98Nの 場合、初期摩耗領域において、粒子割れの起こって しまうような負荷領域とクラックの伝播促進するよ うな組織条件で、摩耗量が大きくなっていたと考え る。実際に、図8に示す摩耗粉のSEM像において、 定常摩耗状態においては微粉状の摩耗粉が排出され ていたが、初期摩耗領域においては、ブロックのよ うな状態で非常に大きな摩耗粉が排出されているこ とが確認される。

図8 WNF30をF=98Nの条件で摩耗試験した際に排出 された摩耗粉のSEM観察像 (a)摩耗距離が0.02×10⁶mm時(初期摩耗) (b)摩耗距離が1.77×10⁶mm時(定常摩耗)

4. 結言

無電解Niめっきを施したWC粉末(WC/Ni粉末) と純鉄粉末の混合粉を放電焼結することで作製した WC/Ni-x vol.%Fe(x=0~50)超硬合金の乾式摺動特 性を調査した。得られた結果は以下のとおりである。

(1) 定常摩耗の領域で、比摩耗量(Ws) はリングの押し付け荷重(F) に関係なく、材料ごとで一定の値を示した。このとき、摩耗量(W) は、以下の式(1) によって整理された。

$$\mathbf{W} = \mathbf{W}_{\mathrm{s}} \cdot \mathbf{F} \cdot \mathbf{L} + \mathbf{W}_{\mathrm{0}} \tag{1}$$

ここで、Lは摩耗距離であり、W₀は定常摩耗状態